学院数据

副教授

当前位置: 首页   >> 正文

马萍

发布时间:2024年06月30日来源: 作者:

11E29

姓名:马萍

职称/职务:副教授

硕士/博士导师:硕士生导师

联系方式:15999125376,maping@xju.edu.cn


个人简历:

马萍,女,中共党员,工学博士,博士生导师。现为副教授,新疆自动化学会理事,中国自动化学会会员;为Expert System with Applications、ISA Transactions、Measurement、中国电机工程学报、振动与冲击等期刊的审稿专家。主要研究方向包括:工业人工智能、装备智能运维、故障诊断、机器视觉、预测性维护、工业大数据、健康监测与维护决策等。主要讲授本科课程《自动控制理论》、《新能源发电技术》,研究生课程《复杂网络算法与应用》、《动态系统故障诊断技术》等。近5年主持国家自然科学基金项目1项,中国博士后自然科学基金面上资助项目1项,新疆维吾尔自治区青年基金项目1项,横向项目1项。入选自治区“天山英才-青年托举人才”计划、“天山青年”计划、“天池博士”计划、“优秀博士后研究人员”计划,科研经费约200万元。参与国家自然科学基金项目2项,横向项目多项。以第一作者或通讯作者发表论文40余篇,其中SCI/EI论文20余篇。获中国科学技术信息研究所2023年度“领跑者5000——中国精品科技期刊顶尖学术论文”,获2023年新疆维吾尔自治区科学技术(自然科学)奖二等奖(排名第三)。


研究方向:

工业人工智能、装备智能运维、故障诊断、机器视觉、预测性维护、工业大数据、健康监测与维护决策等


主讲课程:

1、本科生课程:

自动控制理论、现代控制理论、新生研讨课、新能源发电技术

2、研究生课程

复杂网络算法与应用、动态系统故障诊断技术


近五年学术成果:

[1] Ma Ping, Li Guangfu, Zhang Hongli, et al. Prediction of Remaining Useful Life of Rolling Bearings Based on Multiscale Efficient Channel Attention CNN and Bidirectional GRU[J]. IEEE Transactions on Instrumentation and Measurement,2024, 73:2508413.(SCI)

[2] Ma Ping, Liang Weilong, Zhang Hongli, et al. Multiscale permutation entropy based on natural visibility graph and its application to rolling bearing fault diagnosis.Structural Health Monitoring, 2024. doi:10.1177/14759217241229999.(SCI)

[3] Gong Fengjin,Ma Ping*, Wang Nini, Zhang Hongli,et al. Cross-device fault diagnosis of rolling bearings using domain generalization and dynamic model. Journal of Vibration and Control. 2024. doi:10.1177/10775463241256253.(SCI)

[4] Wang Nini,Ma Ping*, Wang Xiaorong, et al. Detection of unknown bearing faults using re-weighted symplectic geometric node network characteristics and structure analysis[J]. Expert Systems with Applications, 2023, 215: 119304.(SCI)

[5] Ma Ping, Zhang Hongli, Wang Cong. Adaptive dynamic mode decomposition and its application in rolling bearing compound fault diagnosis[J]. Structural Health Monitoring, 2022: 14759217221095729.(SCI)

[6] Ma Ping,Zhang Zhou, Zhang Hongli, et al. Compound fault diagnosis of rolling bearing under variable speed based on generalized demodulation transformation and symplectic geometric mode decomposition[J].Journal of Vibration and Control, 2022: 10775463221082924.(SCI)

[7] Ma Ping;Zhang Hongli;Fan Wenhui;Wang Cong;A diagnosis framework based on domain adaptation for bearing fault diagnosis across diverse domains.ISA Transactions, 2020, 99: 465-487.(SCI)

[8] Ma Ping;Zhang Hongli;Fan Wenhui;Wang Cong;Early fault diagnosis of bearing based on frequency band extraction and improved tunable Q-factor wavelet transform,Measurement, 2019,137:189-202.(SCI)

[9] Ma Ping,Zhang Hongli, Fan Wenhui, et al. A novel bearing fault diagnosis method based on 2D image representation and transfer learning-convolutional neural network[J].Measurement Science and Technology, 2019, 30(5): 055402.(SCI)

[10] Ma Ping,Zhang Hongli, Fan Wenhui, et al. Early fault detection of bearings based on adaptive variational mode decomposition and local tangent space alignment.Engineering Computations,2019, 36(2):509-532.(SCI)

[11] 张家军,马萍*,张海,等.基于迭代增强变分模态提取的滚动轴承复合故障诊断[J].振动与冲击,2024,43(07):255-265.

[12] 谭启瑜,马萍*,张宏立等.基于图注意力网络的风力发电机齿轮箱故障诊断[J].太阳能学报,2024,45(01):265-274.(EI)

[13] 肖飞,张宏立,马萍*,王聪.基于多时频曲线提取广义特征的变转速轴承故障诊断[J].振动与冲击,2022,41(13):152-159+188.(EI)

[14] 王妮妮,马萍*,张宏立,王聪.基于多尺度深度卷积网络特征融合的滚动轴承故障诊断[J].太阳能学报,2022,43(04):351-358.(EI)

[15] Ma Ping,Zhang Hongli, Fan Wenhui, et al. Fault diagnosis using an improved fusion feature based on manifold learning for wind turbine transmission system[J].Journal of Vibroengineering, 2019, 21(7): 1859-1874.(EI)

[16] Ma Ping, Zhang Hongli, Fan Wenhui, et al. Novel bearing fault diagnosis model integrated with dual-tree complex wavelet transform, permutation entropy and optimized FCM[J].Journal of Vibroengineering, 2018, 20(2): 891-908.(EI)

[17] 马萍,张宏立,范文慧.基于局部与全局结构保持算法的滚动轴承故障诊断,机械工程学报, 2017, 53(2): 20-25.(EI)

[18] Wang Nini,Ma Ping* Zhang H, et al. Fault feature enhancement and diagnosis of rolling bearing based on complex network[C]//2021 CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS). IEEE, 2021: 1-6.(EI会议)

[19] Ma Ping,Zhang Hongli, Wang Cong. Improved Transfer Component Analysis and It Application for Bearing Fault Diagnosis Across Diverse Domains[C]//2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS). IEEE, 2019: 501-506.(EI会议)

[20]马萍,王妮妮,张宏立,王聪. 基于信号分解与复杂网络的滚动轴承未知故障检测方法[P]. 新疆维吾尔自治区:CN113095151B,2023-04-18.(发明专利)


近五年主持或在研项目:

1、国家自然科学基金项目,复杂数据特征下风电传动系统故障诊断研究,2021-01至2024-12,在研,主持

2、新疆维吾尔自治区自然科学青年基金项目变转速工况下风电轴承复合故障诊断研究,2022-04至2025-04,在研,主持

3、新疆维吾尔自治区天山英才-青年托举人才项目,新型电力系统发-输配电端关键设备故障检测及运行可靠性评估,2023-10至2026-10,在研,主持

4、横向项目,金风科技大型风力发电机组关键大部件故障诊断及预测方法研究及建模,2024.01-2025.12,在研,主持

5、中国博士后自然科学基金面上项目,基于深度学习的风电机组(群)传动系统故障诊断研究, 2020-07至2022-07,结题,主持

6、新疆维吾尔自治区天山青年计划项目,风电机组关键部件故障诊断与剩余寿命预测研究,2021-04至2023-04,结题,主持

7、新疆维吾尔自治区天池博士计划项目,大型风电机组健康管理技术研究,2020-01至2021-12,结题,主持

8、新疆大学博士启动基金项目,2020-01至2022-12,结题,主持